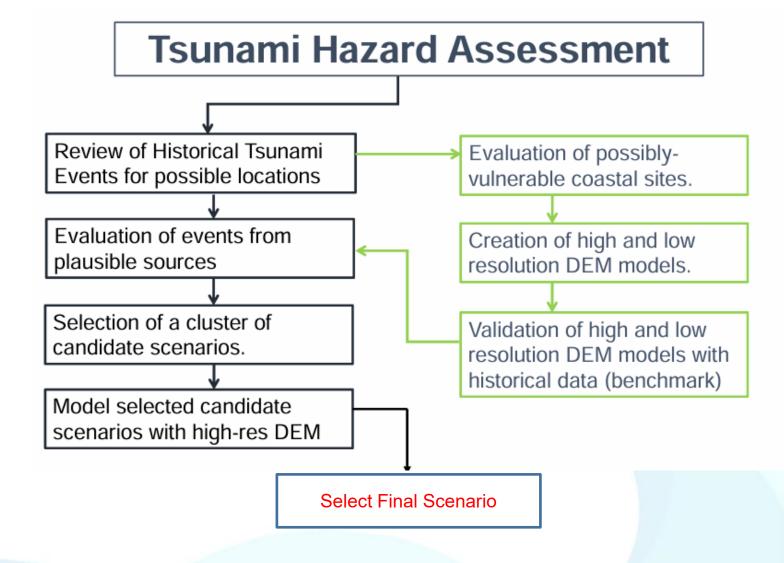


Training/Workshop on

Tsunami Evacuation Maps, Plans, and Procedures and the UNESCO-IOC Tsunami Ready Recognition Programme for the Indian Ocean Member States

Hyderabad - India, 15-23 April 2025

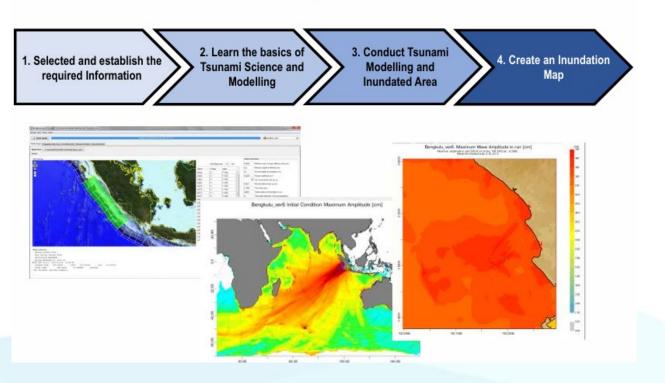
Tsunami Inundation Modelling and Map


TIMM: Finalizing Inundation Map Guidelines for Map Publication

Dr R S Mahendra Scientist-E, INCOIS

Introduction

- •What is a tsunami inundation map?
- •Why is it important?
- •Objective of this presentation: to outline key steps and guidelines for finalizing and publishing the map.



Tsunami Inundation Mapping Overview

- Definition: Delineation of areas that may be flooded due to tsunami waves.
- •Input data: Bathymetric/topographic data, tsunami modeling, historical records.
- Output: Maps for emergency planning and public awareness.

Inundation Map

Finalizing the Map – Key Considerations

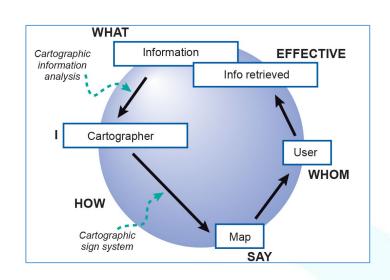
- Accuracy of elevation and bathymetric data
- Resolution and scale (usually 1:10,000 to 1:25,000)
- Map overlays: critical infrastructure, population centers
- •Scenario selection: worst-case, historical, or probabilistic models

Map Elements to Include

- Inundation extent and depth
- Landmarks and infrastructure
- Evacuation zones and routes
- Legend, scale bar, north arrow
- Source and metadata
- •Index maps, Logos, etc.

Quality Assurance & Validation

- Cross-check with historical data and field verification
- Peer reviews by technical experts
- Stakeholder consultation (local authorities, emergency services)



Cartographic Guidelines

- Consistent color schemes (e.g., blue shades for inundation)
- Clarity and readability: avoid clutter
- Labeling of high-risk areas
- Use of standard symbology (ISO/TC 211 where applicable)

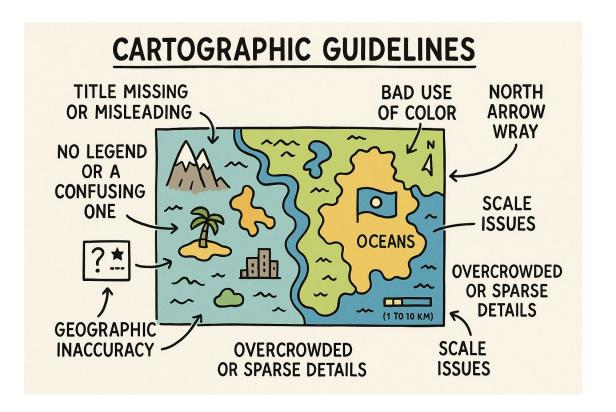
Guidelines for Map Publication

- •Format: Digital (PDF, GIS layers), Print (Posters, Brochures)
- •Accessibility: Multilingual, large print for visibility, colorblind-friendly options
- **Distribution:** Government portals (Web GIS, Mobile Applications, APIs), public awareness campaigns, community centers

Version control: Include map version, date of publication

Examples of Tsunami Inundation Maps

- I. Vulnerability classification
- Low risk Carnicobar Eq (8.1.Mw)
- High risk Sumatra Eq (9.3Mw)
- Maximum risk Hypo. Carnicobar Eq (9.3 Mw)


II. Inundation Depth

water level due to Sumatra 2004

III. Others details

- ☐ From Satellite Imagery
 - Landuse
- ☐ From DC images (upto 2 km from coast)
 - Elevation Contours
 - Infrastructure details
 - Trees
 - Roads
 - Railways
 - Buildings
- **□**Secondary data
 - Cadastral boundaries and Survey Nos
 - Administrative boundaries

Thank you

